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1. Introduction

Unimodal polynomials occur naturally in combinatorics, algebra, geometry and analysis. The
reader is referred to [3,31,32,37,39,40,42,47,55] for recent progress on this subject. As pointed out by
Brenti [ 12], to prove the unimodality of a polynomial can sometimes be a very difficult task requiring
the use of intricate combinatorial constructions or of refined mathematical tools. This paper is
motivated by empirical evidence which suggests that some multivariate Eulerian polynomials (with
the specialization of some variables) are unimodal with modes in the middle.

Let f(x) = Z?:O fix' be a polynomial with real coefficients. We say that f(x) is unimodal if

fo<h<-<fizhmz2h

for some k, where the index k is called the mode of f(x). If f(x) is symmetric with the center of
symmetry [n/2], i.e., fi = f,—; for all indices 0 < i < n, then it can be expanded as

[n/2]
f) =y 1+ 2
k=0
Following Gal [27], the polynomial f(x) is y-positive if y; > 0 for all 0 < k < |n/2], and the sequence
{yk}lﬁi/g Vs called the y-vector of f(x). Clearly, y-positivity implies symmetry and unimodality. We
say that the polynomial f(x) is spiral if

fao<fo<foo1 <fi <0 < Sz

Following [49, Definition 2.9], the polynomial f(x) is alternatingly increasing if

Jo <fo <fi <fam1 < < flry)-

If f(x) is spiral and degf(x) = n, then x"f(1/x) is alternatingly increasing, and vice versa.
Clearly, spiral property and alternatingly increasing property are stronger than unimodality. The
alternatingly increasing property first appeared in the work of Beck-Stapledon [7]. Recently, Beck-
Jochemko-McCullough [6] and Solus [53] studied the alternatingly increasing property of several
h*-polynomials as well as some refined Eulerian polynomials.

We now recall an elementary result.

Proposition 1.1 ([7,10]). Let f(x) be a polynomial of degree n. There is a unique symmetric decompo-
sition f(x) = a(x) + xb(x), where
_ pn+1 1 neq _
a1 x xf( M g = X 1/x) - fx).

When f(0) # 0, we have dega(x) = n and degb(x) <n — 1.

(1)

We call the ordered pair of polynomials (a(x), b(x)) the symmetric decomposition of f(x), since
a(x) and b(x) are both symmetric polynomials.

Definition 1.2. Let (a(x), b(x)) be the symmetric decomposition of a polynomial f(x). We say that
f(x) is bi-y-positive if a(x) and b(x) are both y-positive. The y-coefficients of a(x) and b(x) are called
the bi-y-coefficients of f(x).

Brandén-Solus [10] pointed out that the polynomial f(x) is alternatingly increasing if and only
if the pair of polynomials in its symmetric decomposition are both unimodal and have only non-
negative coefficients. Therefore, bi-y-positivity is stronger than alternatingly increasing property. In
Section 2, we discuss the relationship between bi-y-positivity and alternatingly increasing property.
One of the main results is Theorem 2.4, which provides a sufficient condition for a bivariate
polynomial to have alternatingly increasing property.

Let [n] = {1, 2, ..., n}. Let S, be the set of permutations on [n]. For 7 = (1) --7(n) € Sy, we
say that i is a descent (resp. excedance, drop, fixed point) if 7 (i) > = (i + 1) (resp. 7w (i) > i, w(i) <

2
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i, w(i) = i). Let des (;r), exc (;r ), drop (), fix (7 ) and cyc (;r ) be the numbers of descents, excedances,
drops, fixed points and cycles of r, respectively. Clearly,

exc(m)+ drop () + fix(w) = n.

It is well known that descents, excedances and drops are equidistributed over S, and their common
enumerative polynomial is the classical Eulerian polynomial (see [52, A008292]):

X) = Z xdes(m) — Z xexe(m) _ Z drop ()

TEeSH TESH TeSy

The (p, q)-Eulerian polynomials A,(x, p, q) are defined by

LD, q) Z xexe(m) ﬁx(n Cyc(ﬂ) (2)

TeSh

In this paper, one can see that the (p, q)-Eulerian polynomials A,(x, p, q) contain a great deal of
information about permutations and colored permutations. One can obtain Eulerian polynomials of
types A and B, g-derangement polynomials of types A and B, 1/k-Eulerian polynomials and r-colored
Eulerian polynomials from the (p, q)-Eulerian polynomials by special parametrizations.

In Section 3, as an application of Theorem 2.4, we study the alternatingly increasing property of
An(x, p, q). In Section 4, we first give a combinatorial interpretation of the symmetric decomposition
of the 1/k-Eulerian polynomials k"A;(x, 1, 1/k), and then we present a combinatorial interpretation
of the bi-y-coefficients of the following weighted Eulerian polynomials:

2"An(x, 1, 1/2) = erxc(ﬂ yn—cye(m)

TeSy

In Section 5, we study excedance-type polynomials (in six variables) of signed permutations.
In Section 6, we present some results on the enumerative polynomials of signed permutations
associated with the flag excedance statistic. In Section 7, we study excedance-type polynomials
of colored permutations, including r-colored Eulerian polynomials and three kinds of multivariate
colored Eulerian polynomials.

Besides Theorem 2.4, the main results include Theorems 3.4, 3.6, 4.6, 5.2, 5.11, 5.13, 6.2, 6.5, 7.5,
7.8,7.11 and 7.15. In conclusion, our results unify and generalize some results of Athanasiadis [2,4],
Bagno-Garber [5], Braindén-Solus [10], Chen-Tang-Zhao [20], Chow [21,22], Chow-Mansour [23],
Foata-Han [25], Han [32], Mongelli [45], Petersen [46], Shin-Zeng [50,51].

2. Bi-gamma-positivity and alternatingly increasing property

If f(x) is y-positive, then f(x) is also bi-y-positive but not vice versa. We now provide a
connection between y-positivity and bi-y -positivity.

Proposition 2.1. If f(x) is y-positive and f(0) = 0, then f’(x) is bi-y -positive.

Proof. Assume that f(x) = Y1) 1xk(1 4 x)"2, where y; > 0 for all 1 < k < |n/2]. Then we
have

n/2] L(n—1)/2]

) =Y kX N+ D (= 2k (1 4 2"
k k=1

[(n—2)/2] ) ) [(n—3)/2] ) )
= (4 D142 4 x Y (n—2 = 2)yd(1 4257
i=0 j=0

Therefore, f'(x) is bi-y-positive. 0O



S.-M. Ma, J. Ma, J. Yeh et al. European Journal of Combinatorics 118 (2024) 103869

The following simple result will be used repeatedly in our discussion. For completeness, we give
a proof of it.

Lemma 2.2. Let f(x) = Z:’ Of,x' and g(x) = ZJ Ogjxf If f(x) is y-positive and g(x) is bi-y-positive,
then f(x)g(x) is bi-y -positive. In particular, the product of two y -positive polynomials is also y -positive.

Proof. Assume that f(x) = ";"/2) yx*(1 + x)"~% and
[m/2] [(m+1)/2]

ZEIX(]"‘Xm 21_,r_ Z 77] +Xm+l 2]

where yy, & and »n; are all nonnegative numbers. Then f(x)g(x) can be expanded as

Lntm)/2) L(n+m+1)/2]
f(x)g(x) = Z asX*(1 4 x2S 4 Z BX{(1 4 x)HHm12
s=0 —

where o5 = ZMZS wé& >0and B; = Zkﬂ.:t yknj > 0, as desired. O
We now recall a definition.

Definition 2.3 ([40, Definition 4]). Let p(x,y) be a bivariate polynomial. Suppose p(x,y) can be
expanded as

n [(n—i)/2]
Zy Z Hni] 1+X)n = (3)
If wnij > 0forall 0 <i<nandO <j< |(n—i)/2], then we say that p(x, y) is partial y-positive.

The numbers w;;; are called the partial y-coefficients of p(x, y).
The partial y-positive polynomials frequently appear in combinatorics and geometry, see [3,33,
34,40] for details. We can now conclude the first main result of this paper.

Theorem 2.4. Suppose the polynomial p(x, y) has the expression (3) and degp(x, 1) = n — 1, where
n is a positive integer. If p(x, y) is partial y-positive, p(x, 1) is bi-y-positive and 0 < y < 1 is a given
real number, then p(x, y) is alternatingly increasing.

Proof. For 0 <i<nand 0 <j< [(n—1)/2], let

n—i—j

M (14 X770 = 375, 5x

t=j
Since the polynomials ) j—;™’ S, ;jx" are symmetric and unimodal, we have

Snij¢ = Snijn—i—ts lfJ <l<n—i—j .
Sn,,'.j.g < anj!j![_'_k, lf_] <Ll <fl+k< |_(Tl . l)/ZJ; (4)
Snije = Snij e+l if [(n—1i)/2] <€<fl+k<n—i—].
For any n > 1, assume that p(x, y) Zz —oPne(y y)x¢ where
n L(n=0)/2]

pnﬁ Zy Z Snl]?

For 0 < ¢ < [n/2], we have

n [(n—1)/2]

Pne(y) = Prn—e(y) = Zy > (Snije = Snijn-t)
j=0

4
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- Z (Sn.iie — Snij.e—i) -
j=0

By (4), we have Sy ij ¢ — Sp.ije—i > 0. Hence p, ¢(¥) > pnn—e(y) wheny > 0.
For 0 < £ < |n/2] — 1, we have

n [(n—i)/2]
Pun—1-¢(¥) — Pne(y ZJ/ Z (Snijin—1-¢ — Snije)
j=0
n l(n—1)/2]
= Zy Z Snijer1-i — Sn,i,j,/z) ,
j=0

which can be rewritten as py n—1-¢(¥) — Pn.e(¥) = Pn¢ — Qn.¢(y), where

n/2] n [(n—0)/2]
Pne = Z (Sn.0.e+1 — Sn0.e) Zy Z (Snij.e — Snijies+1-i) -
=0 j=0

It follows from (4) that S;0j¢+1 — Snoje = 0 and Spije — Snije+1—i > 0 fori > 1. Since
px, 1) = Z;’;S pn.e(1)x% is bi-y-positive, the polynomial p(x, 1) is alternatingly increasing, which
implies that

Pnn—1—e(1) = Pne(1) = Py e — Que(1) = 0. (5)
Therefore, if 0 <y < 1, then Py y — Qn¢(¥) = Pre — Qne(1) > 0. In conclusion, when0 <y <1,
we get pn((y) > pn.n—e(Y) for 0 < £ < |n/2] and ppa—1-¢(¥) > pne(y) for 0 < € < [n/2] — 1. This

completes the proof. O

In the next Section, we shall present an application of Theorem 2.4.

3. Excedance-type polynomials of permutations
3.1. Preliminary

The cardinality of a set A will be denoted by #A. Let = € S,. Recall that
des(m)=#{ie[n—1]: (i) > n(i+ 1)}.

Anindex i € [n] is called a double descent of w if w(i—1) > (i) > n(i+1), where 7(0) = w(n+1) =
0. Foata-Schiitzenberger [26] found the following notable result.

Proposition 3.1 ([26]). For n > 1, one has

L(n—1)/2]

A= Y yax(1+x
i=0

where yy; is the number of permutations = € S, which have no double descents and des () = i.

An element 7 € S, is called a derangement if fix (;r) = 0. Let D, be the set of all derangements
in S,. The derangement polynomials (of type A) are defined by

— Z Xexc(n).

n€Dp
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The exponential generating function of d,(x) is given as follows (see [11, Proposition 6]):

oo

a2 =Y dns = X (6)

n! ex? — xe?
n=0

The reader is referred to [52, A046739] for some references on derangement polynomials.
Let cda(w) = #{i : #~'(i) < i < m(i)} be the number of cycle double ascents of 7. Using the
theory of continued fractions, Shin-Zeng [50, Theorem 11] obtained the following result.

Proposition 3.2 ([50]). Let Dy = {m € Sy : fix(wr) =0, cda(w) =0, exc(w) = k}. Then

[n/2]
Z Xexc(n cyc(m) _ Z Z qcyc n)xk +X)n 2k (7)
weDy =1 7€Dp

In the past decades, various refinements and generalizations of Propositions 3.1 and 3.2 have
been extensively studied. The reader is referred to [3,28,33,40,50,55] for more details.

Let +[n] = [n] U {1,...,7n}, where i = —i. Let S8 be the hyperoctahedral group of rank n.
Elements of Sff are permutatlons of £[n] with the property that o(i) = —o (i) for all i € [n]. Let
o = o(1)o(2)---a(n) € SE. An excedance (resp. fixed point) of o is an index i € [n] such that
o(lo(i)]) > o(i) (resp. o (i) = i). Let exc (o) (resp. neg (o), fix (o) and cyc (o)) denote the number of
excedances (resp. negative elements, fixed points and cycles) of o. Let DE = {0 € S,‘f : fix(o) = 0}
be the set of all derangements in S,’f. The type B derangement polynomials d’,f(x) are defined by

B X) — § : Xexc(a).
ae’Dﬁ

The polynomials dﬁ(x) have been studied by Chen-Tang-Zhao [20], Chow [22] and Shin-Zeng [51].
According to [22, Theorem 3.2], the exponential generating function of d5(x) is given as follows:

(1 —x)e?
B —
Zd nl - erz _ erz (8)
Chen—Tang—Zhao [20, Theorem 4.6] proved the following remarkable result.

Proposition 3.3 ([20]). For n > 1, the polynomials x“dB(l /x) are spiral. Equivalently, the polynomials
dB(x) are alternatingly increasing.

For the (p, q)-Eulerian polynomials Ax(x, p, q) defined by (2), we set
An(x,q) = An(x, 1,q) = Z XEXC(JT cye(m)

TeSy

Brenti [14] showed that some of the crucial properties of Eulerian polynomials have nice
g-analogues for the g-Eulerian polynomials A,(x, q). Following [ 14, Proposition 7.2], the polynomials
An(x, q) satisfy the recurrence relation

d
7An(xv q)? AO(Xs q) =1 (9)

Ant1(X, @) = (X + @An(x, @) + X(1 = x) =

According to [14, Proposition 7.3], we have
> n z\ 4
z (1 —x)e
ZAn(xv CI)E = (m) .
n=0
Using the exponential formula, Ksavrelof and Zeng [36] found that

0 n z \ 4

z (1 —x)eP
DA 9) = (ﬁ) ' (10)
n=0
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Below are the polynomials A,(x, p, q) for n < 4:

Ai(x.p, q) = pq, Ax(x,p,q) = p°q* +qx, As(x,p,q) = p’q> + (q + 3pg*)x + gx°,
As(x.p, q) = p*q* + (g + 4pg® + 6p°q*)x + (49 + 3¢° + 4pg® K + gx°.

3.2. Main results

Note that An(x, 1, 1) = An(x) and Ax(x, 0, q) = d,(x, q). We can now present the second main
result of this paper, which unifies Propositions 3.1 and 3.2.

Theorem 3.4.

(i) For any n > 1, we have

no Ln-i)2)
An(x, p, q) = Zp’ Z Yuif(@¥ (14 x)"7 (11)
i=0 j=0

(ii) Let Spjj = {m € Sy : cda(nw) =0, fix(w) =1, exc(mw)=j}. Then
aif@= Y q¥™. (12)

JZESn_iJ‘

Therefore, the (p, q)-Eulerian polynomial A,(x, p, q) is partial y-positive if ¢ > 0 is a given real
number.
(iii) Let
n L(n—i)/2]

=y(x,p.qz —1+ZZP Z Ynij(d

n=1 i=0
Then we have

1

y(x,p,q;2) = ez<p‘2) J1—4x

q
q
(«/1 — 4xcosh (£4/1 — 4x) — sinh (/1 —4x)> '
A left peak of 1 € S, is an index i € [n — 1] such that (i — 1) < #(i) > (i + 1), where
(0) = 0. Denote by Ipk(sr) the number of left peaks in 7. Let Q(n, i) = #{w € S, : Ipk(w) =i},

and let Qu(x) = Z}i{)” Q(n, i)x'. Gessel [52, AO08971] obtained the following exponential generating
function:

(13)

o0 n «/7
z 1
Qx2) =1+ QX5 = : (14)
p— n! /1 —xcosh(z+/1 — x) — sinh(z+/1 — x)
Comparing (13) with (14) leads to
x 1
X; Z , 1,2z 15
Qx;z) = ( 17 ) (15)
Let C, be the set of permutations in S, with no cycle double ascents. Note that
n [(n—i)/2]
Z xoX¢ 71) fix () cyc Z Z ynl](q
meCp i=0 j=0

An equivalent result to (15) is given as follows.

Corollary 3.5. We have

Z lek(zr) — Z zn—fix(n)—Zexc(zr)Xexc(n).

TESH meln
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Comparing (8) with (10), we get 2"A,(x, 1/2,1) = dB(x). From Proposition 3.3, we see that
An(x, 1/2, 1) are alternatingly increasing. The third main result of this paper is given as follows.

Theorem 3.6. Let p € [0, 1] and q € [0, 1] be two given real numbers, ie, 0 < p<land0<qg< 1.
Then we have the following two results:

(i) the polynomials Au(x, q) = Y_ . s, X*)q¥°™) are bi-y-positive;

(ii) the polynomials Ay(x, p, q) = Znesn xex@pfix(T)gyve(m) qre alternatingly increasing.

In Sections 5-7, we collect several applications of Theorem 3.6.
3.3. Proof of Theorem 3.4

Following Chen [16], a context-free grammar G over an alphabet V is defined as a set of
substitution rules replacing a letter in V by a formal function over V. As usual, the formal function
may be a polynomial or a Laurent polynomial. The formal derivative D; with respect to G satisfies
the derivation rules:

Dg(u + v) = Dg(u) + Dg(v), Dg(uv) = Dg(u)v + uDg(v).
So the Leibniz rule holds:

DRy =Y (Z)DE(U)DE”‘(U).

k=0

Example 3.7 ([16]). Let G = {x — xy,y — y}. Then

Dix)=xY {Z}y",
k=0

where {}} is the Stirling number of the second kind.

In recent years, context-free grammars have been used to study permutations [17,19,40],
increasing trees [17,19], Stirling permutations [18,40,44] and perfect matchings [38]. According
to [17], an advantage of the grammatical description of a combinatorial sequence is that a recursion
of its generating function can be provided by attaching a labeling of the combinatorial object in
accordance with the replacement rules of the grammar.

The following two definitions will be used repeatedly in our discussion.

Definition 3.8 ([17]). A grammatical labeling is an assignment of the underlying elements of a
combinatorial structure with variables, which is consistent with the substitution rules of a grammar.

Definition 3.9 ([40]). A change of grammar is a substitution method in which the original grammar
is replaced with functions of other grammars.

The method of change of grammar has proved to be useful in handling combinatorial expansions
of descent-type polynomials, see [40,41] for details. In this paper, we use the change of grammar
technique to establisl} combinatorial expansions of excedance-type polynomials.

o

Let An(x) = o (X", where (}) are called Eulerian numbers (see [52, A008292]). There is a

k=
grammatical interpretation for Eulerian numbers.

Proposition 3.10 (24, Section 2.1]). If V = {x,y} and G = {x — xy,y — xy}, then

n—1
n
Di(x) = XZ <k>x"y"”‘ forn>1.
k=0
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For m € S, recall that exc(s) + drop (;r) 4 fix(r) = n. Now we present a simple variation of
An(x, p, q), which will be used repeatedly in this paper.

Proposition 3.11. We have

X exc(m) p fix () xp
Z Xexc(n)ydlop(n)pﬁx(n)qcyc(n) — yn Z (}) (y) qcyc(n) — ynAn (y’ y, q) )

weSp neSy

In the following discussion, we always write permutation, signed or not, by its standard cycle
form, in which each cycle has its smallest (in absolute value) element first and the cycles are written
in increasing order of the absolute value of their first elements. As an extension of Proposition 3.10,
we present a fundamental lemma.

Lemma 3.12. LetV ={l,p,q,x,y} and G={I — Ipq,p — xy,x — xy,y — Xy, q — 0}. Then
Dg(l) -1 Z xexc(n)ydrop(n)pfix(n)qcyc(n).
TESH
Proof. Let 7 € S,. We introduce a grammatical labeling of r:

(L) if i is an excedance, then put a superscript label x right after i;

(Lp) if i is a drop, then put a superscript label y right after i;

(Ls) if i is a fixed point, then put a superscript label p right after i;

(L4) put a superscript label I right after 7 and put a subscript label g right after each cycle.

With this labeling, the weight of 7 is defined as the product of its labels, that is,
w(n) _ Ixexc(n)ydrop(n)pfix(rr)qcyc(n).

For example, let 7 = (1, 4, 3)(2, 6)(5). The grammatical labeling of 7 is given below
(1%4737),(276")g(5").-

If we insert 7 after 5, the resulting permutation is (1"4y3y)q(2"6y)q(5"7y){]. If the inserted 7 forms a
new cycle, the resulting permutation is (1"4y3y)q(2"6y)q(5")q(7”)£1. If we insert 7 after 1, 4, 3,2 or 6,
then we respectively get

(177 43)4(2°6")y(5);.
(1%4°773)4(2°6”)g(57);
(1%473%77)4(2°6” )y (57
(1%4737),(2"776Y)y(5);

(1%4737),(246* 7Y )g(5" ).

In each case, the insertion of 7 corresponds to one substitution rule in G. When n = 1, 2, we have
S1 = {(1P);) and &, = {(17)4(27);, (1*2”);}. Consider 7 € S,_1, where n > 3. When we insert the

entry n into 7z, we only need to distinguish among four distinct cases:

(
(CZ) (lp)q_) ...(l'xn)')q...;

(C3) (lx])q—> (anJ/])q_
( )q_)(lanJ)q



S.-M. Ma, J. Ma, J. Yeh et al. European Journal of Combinatorics 118 (2024) 103869

Therefore, the action of the formal derivative D; on the set of weighted permutations in S,_; gives
the set of weighted permutations in S,. This yields the desired result. O

It should be noted that the grammar given in Lemma 3.12 can be simplified as follows:
G={I—Ipq,p— xy,x = xy,y = xy}, (16)

where g can be seen as a given parameter and Dg(q) = 0.

A proof of the combinatorial expansion (11). By Lemma 3.12, we obtain
DG(I) li=y=1= An(x, p, ). (17)
Consider a change of the grammar given by (16). Let u = xy and v = x + y. Then
D¢(I) = Ipq, D¢(p) = u, Dg(u) = uv, Dg(v) = 2u.
Let G, = {I — Ipq,p — u, u — uv, v — 2u}. Note that
De,(I) = Ipq, DZ (1) = 1(p*q* + qu), D¢, (I) = I(p°q® + 3pq*u + quuv).
For n > 1, assume that

n ‘L(nfi)/ZJ
LN=1Y"p" Y ynil@uiv". (18)
i=0 j=0

We now show that (18) holds for n + 1. Since Dgl(l) = Dg, <D22(1)>, we have

Dngl D62 Z Y, lj p u;vn =

-1 Z Vn.i,j(q) (qpt+1u;,un—t—2] + ipl—lu]-H vn—i—Zj _}_jpiujvn-H—i—Zj) +
ij
1> ynif@)(2n — 2i — 4j)p'd Ty 1,
ij
Taking the coefficients of Ip't/v"*1~"=% on the right side of the above expression, we obtain
q¥ni-15(q) + (i + Dniv1-1(q) +jvnii(@) + (2n — 2i — 4 + 4)ynij-1(q).
Hence DZZH(I) can be written as follows:

n+1  |(n+1-i)/2]

DI =1Y"p > yarrifl@uiv™ 7,

=0
where
Yor1,ij(@) = q¥ni—1j(@) + (0 + Dyniv1j-1(q) +ivnij(@) + (2n — 20 — 4 + 4)ynij-1(q),  (19)

with the initial conditions y1,1,0(q) = q and y4;j(q) = 0 for (i, j) # (1, 0). Hence (18) holds for n41.
From (19), we see that if g > 0, then y;,; j(q) > 0. Moreover, upon substituting u = xy and v = x+y
n (18), we get the following expansion:

n L(n—i)/2]

MD=1>"p Y yaif@xyx+y) .
T

Comparing this with (17), we obtain
n L(n—i)/2]

(X, D, q) Zp Z )/nlj 1+X)n121 O

10
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Let (c1, ¢z, ..., ¢;) be a cycle of 7. Then ¢; = min{cy, ..., ¢}. Set ¢i11 = ¢1. Then ¢ is called

e a cycle double ascent in the cycle if ¢;_1 < ¢; < ¢jy1, Where 2 <j<i—1;
e a cycle double descent in the cycle if ¢, > ¢; > ¢j41, where 2 < j <i;
e a cycle peak in the cycle if ¢;_1 < ¢; > ¢j1, where 2 <j < ;
e a cycle valley in the cycle if ¢ > ¢; < ¢j4q1, where 2 <j<i—1.
Let cda(mr) (resp. cdd (;r), cpk(sr), cval(rr)) be the numbers of cycle double ascents (resp. cycle
double descents, cycle peaks, cycle valleys) of 7.
We define an action ¢, on S, as follows. Let ¢ = (cy, ca, ..., ¢;) be a cycle of & € S, with at least
two elements. Consider the following three cases:

e if ¢ is a cycle double ascent in c, then ¢ (7) is obtained by deleting ¢, and then inserting ¢,
between ¢; and cj1, where j is the smallest index satisfying k < j <iand ¢; > ¢ > ¢j11;

e if ¢ is a cycle double descent in c, then ¢, () is obtained by deleting ¢, and then inserting ¢,
between ¢; and ¢j;1, where j is the largest index satisfying 1 <j < k and ¢; < ¢k < Cj41;

e if ¢, is neither a cycle double ascent nor a cycle double descent in c, then c is a cycle peak or
a cycle valley. In this case, we let ¢ (7) = 7.

Following [9], we define a modified Foata-Strehl group action ¢;, on S, by

() = ox(), if x is a cycle double ascent or a cycle double descent;
)= T, if x is a cycle peak or a cycle valley.

Define

CDD (7)) = {x | x is a cycle double descent of 7},

‘Sr},i,j,k ={mr eSy:cda(n) =0, fix(w)=1i, exc(w)=j, cyc(mw) =k},

Shijx=1{m €Sy:cda(m) =1, fix(w) =i, exc(w) =}, cyc(w)=k}.

Form € S,.l,,i,j,k and x € CDD (), it should be noted that exc (7)) equals the number of cycle peaks of
7T, () € 85,i,j+1,k and x is the unique cycle double ascent of ¢, (7). Conversely, for 7 € Sﬁqi’jJrLk,
let x be the unique cycle double ascent of 7. Note that ¢;(7) € S,} and x becomes a cycle double

descent in ¢}(7). This implies that

Sk

|Sm il = (0 =1 =201y 1l (20)

where n — i — 2j is the number of cycle double descents of permutations in S)},i,j, R

Example 3.13. Let 7 = (1,10,6,5,7,3,2,8)(4.9) € Sl o, ,- We have CDD(xr) = {3, 6}. Then
@3(r)=1(1,3,10,6,5,7,2,8)(4,9), ¢s(r)=1(1,6,10,5,7,3,2,8)(4,9),

and g4(7), @g(7r) € S3.0.5.2-

A proof of (12) by combining modified Foata-Strehl group action. In order to get a permutation
enumerated by y,1,:j(q) by inserting the entry n + 1 into a permutation = € S, then either
cda(r) =0or cda(wr) = 1. When cda (rr) = 0, we distinguish among four distinct cases:

(c1) if m € Syi—1, then we should append (n+ 1) to 7 as a new cycle. This accounts for the term
q¥mi-14(9)

(c2) if m € Sy it1,j—1, then we should insert the entry n 4 1 right after a fixed point. This accounts
for the term (1 + i)yn.ir1j-1(q);

(c3) if m € Sy, then we should insert the entry n+ 1 right after an excedance. This accounts for
the term jyn.i(q);

11
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(cy) ifr € S,}J.Jf] o then there are n — i — 2(j — 1) positions could be inserted the entry n + 1,
since we cannot insert the entry n + 1 immediately before or right after each cycle peak,
and we cannot insert the entry n + 1 right after a fixed point. This accounts for the term

(n—1i—2j42)ynij-1(q).

When cda(r)=1and € Szii, i 1o let x the unique cycle double ascent of 7. We should insert the
entry n + 1 into 7 immediately before x. Using (20), we get the additional term

(n—i—2j42)ynij-1(q).
Thus (19) holds. O

A proof of (13). Define
n  |(n—i)/2]

YalX, D, q) = ZZVW @p'¥, v =y p q2) Zyn(qu

Multiplying both sides of (19) by pix¥ and summing over all i and j, we get

9¥a(x, P, q) dya(x, p, q)

Var1(%, P, @) = (pq + 2nX)yn(x. p, @)+ X(1 — 2p)”T +x(1 = 40— ==
Multiplying both sides of the above recurrence by and summing over all n > 0, we get

ay ay ay ay

— = X(1—=2p)— +x(1 —4x)— + 2xz—. 21

a7 = Pav +x p)8p+( )3X+ 2 (21)
One can directly check that the exponential generating function

q
~ z(p—l)q A/ 1—4x
yx,p.qsz)=e€\ ? > —
V1 —4xcosh (44/T— 4x) — sinh (54/1 — 4x)

satisfies (21). Also, this exponential generating function gives y(x, p, q; 0) = y(x, p, 0; z) = 1. Hence
Y(x,p,q; z) = y(x, p, ¢; ). This completes the proof. O

3.4. Proof of Theorem 3.6
Let k be a fixed positive integer. The 1/k-Eulerian polynomials A%k)(x) are defined by

= z" 1—x k
()2 — —
ZA" W)= <ekz(x—1) —x) : (22)

n=0

let e = (e1,€2,...,65) € Z". Let I, = {e|0<e; <(i— 1)k} be the set of n-dimensional
k-inversion sequences. The number of ascents of e is defined by

. . i €it1
asc(e)=#qi:1<ig<n—1 .
© { Tk <ik+1}

Savage-Viswanathan [48] showed that

AE!()(X) — Z Xasc(e).

e€ly k

In other words, the polynomial A%k)(x) is the s-Eulerian polynomial of the s-inversion sequence
(1,k+1,2k+1,...,(n— 1)k + 1). Comparing (10) with (22), we see that

AP(x) = K"An(x, 1, 1/K) = K"Ag(x, 1/k) = Y xCjn=ovelm), (23)
weSp

Recently, a bijective proof of (23) was provided in [15].
12
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Let Aﬁk)(x) = Z Anj ¥ for n > 1. Below are the polynomials A ( ) for n < 3:

APX) =1, APX) =1+ kx, AP =1+ 3kx + I2x + k2%
Comparing (23) with (9), we get

d
AN () = (14 nkx)AD(x) + kx(1 — x)&A;")(x). (24)
Extracting the coefficients of ¥ in both sides of (24), one can get
Antrjik = (1 + kAnjik + k(n —j + DAnj_1.x, (25)

with the initial conditions Ay o.x = 1 and Ay ;x = 0 for i # 0 (see [43, p. 1470]). Now we give a
grammatical description of the coefficients Ap j:.

Lemma 3.14. If Gy = {l — Iy, x — kxy, y — kxy}, then we have
n—1

DL, (1) =1 Anjudy"™ forn>1. (26)
j=0

Proof. Note that D (I) = Iy, DéO(I) = I(y? + kxy). Hence the result holds for n = 1, 2. Assume
that (26) holds for some n, where n > 2. Note that
DEH (1) = Dg, (Dg,(1) =1 ZAW (Y T kixdy" T 4 k(n — Rty )
J
Extracting the coefficients of x¥'y"~*1 in the right side of the above expression, we get
(1+ kj)An,j;k +k(n—j+ 1)An,jﬁ;k-

Comparing the above expression of coefficients and (25), then Dg:)“l(l ) can be written as

n
DI =1 A1 judy™ .
j=0
Therefore, the result holds for n + 1. The proof follows by induction. O

A proof of Theorem 3.6. Let q € [0, 1] be a given real number and let k be a given positive integer.
From (23), we see that A ( ) = k"An(x, 1/k). To prove the bi-y-positivity of A,(x, q), it suffices to
prove that the polynomials A ( ) are bi-y-positive. Consider a change of the grammar given in
Lemma 3.14. Note that

D¢y (I) = Iy, Dg,y(ly) = Iy(x +y) + (k — 1)Ixy,

De,(x +y) = 2kxy, Dg,(xy) = kxy(x + ).
Set] =1Iy,u=x+y and v = xy. Then
De,(1) =J. DeyJ) = Ju + (k — Div, Dg,() = 2kv, Dg,(v) = kuv.

Let Gy ={I - J,] — Ju+ (k — 1)lv,u — 2kv, v — kuv}. By induction, it is routine to verify that
there are nonnegative integers such that

L(n—1)/2] [(n—2)/2]
A 1 n 1— 21 A- 1 n 2— 21 (27)
n,i; k n,i; k
In particular, D, (I ) (I) Ju+(k— 1)Iv. Note that

DEF(I) = (Ju+ (k — DIv) Y AT 0w 2 oy AL o
i i

13
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]ZAn e (kv 4 2k(n — 1= 201" 27) 4
IZA;J.;,{ (k(i + 11" 4 2k(n — 2 — 20 Py
i

Taking coefficients of Jviu"2 and Iv*1u""1~% on both sides yields the recurrence system

A:+l ik — =01+ kl)A+ ik + 2k(n — 2i + l)An i—1;k +An i—1;k? (28)
A;+1 ik — =k(i+ 1A, n,i;k + 2k(n 2I)An,i—l;k + (k- )An+1 k>

with ATy, = 1, Al = 0fori # 0 and A7, = O for any i Clearly, A7, and A are both
nonnegative when k > 1. For n > 2, we define

L(n—1)/2] L(n—2)/2]

k(x Z Anlkx Ank Z Anlk

Multiplying both sides of (28) by x' and summing over all i, we obtain the recurrence system

A"‘LHA,((x) = (14 2k(n — 1)x)An (%) + kx(1 — 4x)dxAn+k(x) + XA (%), (29)
Apx) = k(1 +2(n —2))A, . (x) + kx(1 — 4x)dxAn (X)) + (k- 1)An+;k(x),

with Atk(x) = 1and A]_,( x) = 0. For convenience, we add more details regarding the derivation
of (29). Note that Y, A’ | . X' = Af, | (x)and YA . X' = A, (x). Moreover,

D+ KAT X 2k (=20 DA x Y AT
i

i i

=A+k(x)+kx— ) +2ka(n—21 DA X +X) AL
i

d
=AL(x)+ kx&Anfk(x) + 2k(n — 1A} (%) — 4kx&An+k( X) + XXA L (),

kZl—i—] n,kx +2k2 — 21i) nllkx—l—(lc—lZAn,kxi

d
= kot A (X) + KA (0) +2ke Y (= 20— 2)A, X + (k= DA, (%)

i
d B B d _
kxd A (%) + KA (%) + 2kx(n — 2)A (%) — 4k aAmk(x) + (k — DAL (x).

After simplifying the above expressions, we get (29).
Upon substituting ] = Iy, u = x+y and v = xy in (27), we obtain

L(n—1)/2] . . [(n=2)/2] ' '
D=1l Y A+ by Y ALy x4y (30)
i=0 i=0
It follows from (26) with (30) that
AP (x) = a(x) + xb0(0) (1)

where

a%k)(x) - Zi)OAn-'—,i;kxi(l + x)n—172i — (1 + X)n 1An+k ( X ) s

i} (32)
D) = 30 Ar Xi(1 4 x)12 2’=(l+x)”*2A;:k< x )
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Therefore, the polynomials A(nk)(x) are bi-y -positive, and so A,(x, q) are bi-y -positive when q € [0, 1].
Let 0 < p < 1and 0 < g < 1 be two given real numbers. Combining (11) and Theorem 2.4, we get
that A,(x, p, q) is alternatingly increasing. This completes the proof. O

Proposition 3.15. Let a%k)(x) and b(nk)(x) be defined by (32). Then we have
a0 = (1 +x+kn — 1Dx)a0(x) + kx(1 — x) S ayd(x) + xbl(x),
B0 = k(1 + (n — WD) + k(1 — x) £V () + (k — 1a(x),
with a{°(x) = 1 and b'(x) = 0.

Proof. According to (32), we see that

(X Yo @' x \_ b’
mik ((1 +x)2) T (1 xypmr Tk <(1 +x)2> T (14 x?

Hence

£A+< x )_(1+x 2% = (n = Da’(x)
dx "\ (1+x2) (1=x)(1+x)3

d X (1+x)Lb3x) — (n — 2)b(x)
& ”;k<(1+x)2> = (1—x)(1+x)—4 :

Using the replacement x — + Th? in (29), and then substituting the above expressions, we get

5

(k) (k)
an+1(x) _ B X (x)
0+ _(1+2k(n 1)(1+X)2)( 1+ T
(1 — X G- (-1’0 x b
(1+x)n+1 (1+x)2(1+x)n-2’
by (%) X b(x)
(1+x)”1=k<]+2(n_2)(1+><)2) 2
(142 2bx) — (n — 2)b(x) aFx)
kx(1 —x) a1 +(k—1)7(1+x)n_l.

Simplifying these two expressions, we get the desired recurrence system. O

By Proposition 3.15, one can see that b(k)(x) is divisible by k — 1 when n > 2. Below the
polynomials aqu)( ) and b( (x)for2 <n<4:

adPx)=14x bPx)=k-1

aP(x) = 14 @Bk + Dx + 22, bPx) = (2 — 1)(1 +x),
aP(x) = 14 (14 6k + 4k*)x + (1 + 6k + 4k* % + &,
bP(X) =k — 14 (43 + 312 — 6k — 1 + (k¥ — 1%,

4. On the 1/k-Eulerian polynomials
4.1. Symmetric decompositions
Recall that A;k)(x) = agf)(x) + xb%k)(x). From (32), we see that

K)oy n—1+ X
=040 (17357).

15
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BR00 = (14 x)"2Ay, (MXX)Z) :

Below the polynomials An (%) and A, (X)) for 2 <n <4

AL X)) =1, Ay () =k—1, AL (x) = 1+ 3k — 1)x, A5, (x) =k — 1,

ALX) = 1+ (Bk +4k* — 2)x, Ay, (x) = k* — 1+ (1 — 6k + 3K* 4 2k°)x.
In this subsection, we present combinatorial interpretations of ag‘)(x) and b%k)(x).

Letj' =j,...,jfori,j > 1. We say that a permutation of {1, 2%, ... n*}is a k-Stirling permutation
N ——
i

of order n if for each i, 1 < i < n, all entries between the two occurrences of i are at least i.
When k = 2, the k-Stirling permutation reduces to the classical Stirling permutation, see [8,30] for
instance. Let Q,(k) be the set of k-Stirling permutations of order n. Let 6 = 0103 - - - oy € Qu(k). We
say that an index i is a longest ascent plateau if 0;_1 < 0; = 0i41 = 0i42 = -+ = Oiyk—1, Where
2 < i< nk—k+ 1. A longest left ascent plateau of o is a longest ascent plateau of o endowed with a

0 in the front of 0. Let ap (o) (resp. lap (o)) be the number of longest ascent plateaus (resp. longest
left ascent plateaus) of o. It is clear that

ap(o)-‘,—l, ifor=0y=---=o0y;
ap(o), otherwise.

lap(o) == {
Example 4.1. We have
ap(112333244421) = 2, lap(111223334442) := lap (0111223334442) = 3.
The following results were obtained in [43]:

k)(x Z x2P k)( ) Z Xlap (33)

o€Qn(k) o€Qn(k)

Note that degAP(x) = n — 1. Let (ag‘)(x), bqu)(x)> be the symmetric decomposition of A%¥(x). Let

On(k) = {o € Qu(k) | 0j < ojy1 for some je[k-1]}. Put Q, = Qn(2). Combining (1) and (33), we
obtain

1
Y reon X = X eonn X

aP(x) = T

So we get the following result.

Proposition 4.2. We have

ab(x) = Z X xpM(x Z x*P

con(k 7 €Qn(k)

g1=0y="=0}

In particular, we have

a(x Z X xp)(x Z x*P

0€Qn o€Qn
o1=0) g1<0y

4.2. A combinatorial interpretation of the bi-y -coefficients of A(r,z)(x)

It follows from (23) and (31) that
AD(x) = 2"Ag(x, 1/2) = Y X210 = q2(x) + xb{2)(x).

TeSy
16
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Below are the symmetric polynomials a(z)( ) and bsqz)(x) for n < 4:
dPx)=1, BPx)=0, dP(x)=1+x, bPx) =1, dPx) =1+ 7x+ 2,
bP(x) =3+ 3x, aP(x) = 1429+ 29 +x°, bP(x) =7 + 31x + 72

We say that w € S, is a circular permutation if it has only one cycle. Let A = {x4, ..., x;} be a finite
set of positive integers, and let C4 be the set of all circular permutations of A. Let w € C4. We will
always write w by using its canonical presentation w = y1y, - - - y;, where y; = minA, y; = w''(y1)
for 2 <i<jandy, = w/(y1). A cycle peak (resp. cycle double ascent, cycle double descent) of w is an
entry y;, 2 < i < Jj, such that yi_1 < y;i > yit1 (1€Sp. yi—1 < ¥i < Yit1, Yi-1 > ¥i > Yit1), Where we
set yj+1 = 00, i.e,, ¥j+1 is the positive infinity. As shown in [41, p. 10-11], the motivation of setting
Yji+1 = oo lies in the fact that when set y;;; = oo, we can gave a combinatorial interpretation of
the g-alternating run polynomials, which are defined by the following recurrence relation:

3
Rnt1(x, @) = (q + nx)xRy(x, q) + x(1 — xz)aRn(x, ), Ro(x,q) = 1.

In this subsection, we use the same assumption, i.e., put a oo at the end of each cycle of .

Let cpk (w) be the number of cycle peaks of the circular permutation w. A run of w is a maximal
consecutive subsequence that is increasing or decreasing. Following [41], the number of cycle runs
crun (w) of w is defined to be the number of runs of the word y;y- - - - yjo0. Assume that cyc () = s
and 7 = wiw; - - - ws, Where w; is the ith cycle of &. The numbers of cycle runs and cycle peaks of
7 are respectively defined by

crun ( Zcrun w;), cpk(m Zcpk w;).

For m € S,, it is clear that 1 < crun(xw) < n.

Example 4.3. We have
crun ((1)(2)(3)---(n)) := crun ((100)(200)(300) - - - (nx0)) = n,

crun ((1,2,3,...,n)) :=crun ((1,2,3,...,n,00)) = 1.

Example 44. If 1 = (1,4,2)3,5,6)7) € Sy, then crun(w) = 5, since the numbers of cycle
runs in the three cycles are 3, 1, 1, respectively. Moreover, cpk ((1, 4, 2)(3, 5, 6)(7)) = 1, so we get
crun () = 2cpk () +cyc(r)=2+3 =5.

Proposition 4.5. For any w € S,, we have crun (i) = 2cpk () + cyc ().

Proof. Assume that 7 = wqw; - -- ws, where w; is the ith cycle of x. Since we put a oo at the
end of w;, then wj; starts in an ascending run and ends in an ascending run. So we get crun (w;) =
2cpk (w;) + 1, which yields that

N

crun(mw) = Zcrun(w,—) =2 Zcpk(wi) + s =2cpk () +cyc(m). O

i=1 i=1

We can now conclude the following result.

Theorem 4.6. Let Sy, ; be the set of permutations in S, with i cycle runs. For n > 2, we have

[(n—=1)/2] [(n=2)/2]
AEIZ)(X) — Z Xexc(n)znfcyc(n — Z f;_ P (] -I—X n 1-2i +x Z gnjxl 1 +X)n 2— 21
TESH j=0

17
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where

:.,—i = Znesn,ziﬂ 2enun(m-aveln) = Znesn,ziJrl 4cpk(ﬂ), (34)
- T)— b k(7

nj = Zﬂesn,2j+2 2emntm)meretn) = Znssmzjﬁ 4P,

Proof. Note that 22A,(x, 1/2) = 1 4 x + x and 23A;(x, 1/2) = [(1 4+ x)> + 5x] + 3x(1 + x). Thus
Eo=6,=1 &g=1 & =5 &,=3.Note that 1 = {(12)}, S22 = {(1)(2)},

33,1 = {(1! 27 3)}! 83,2 = {(17 2)(3)7 (1’ 3)(2)7 (1)(2! 3)}’ 83,3 = {(1)(2)(3)’ (17 37 2)}

It is easy to check that (34) holds for n = 2, 3. We proceed by induction on n. In order to get
permutations in Sy41.2i+1, we distinguish among three distinct cases:

(c1) if m € S;2i, then we can insert n+ 1 into 7 as a new cycle. This gives the term &, ;_;;

(c2) if m € Sy 2441, then 2cpk(m) 4 cyc () = 2i + 1. We can insert n + 1 just before or right after
each cycle peak of 7. Moreover, we can insert n + 1 at the end of a cycle of z. This gives the
term (2i + 1)§,7;

(c3) if m € Spai_1, then 2cpk () + cyc () = 2i — 1. We can insert n + 1 into any of the remaining
n—2i—1) positions and the number of cycle runs is increased by two. This gives the term
4(n— 21—1—1)5 ;- As an illustration, consider = = (1, 3, 5, 2)(4, 6)(7) € S7,5. When 8 is inserted
right after 1 or 4 the number of cycle runs will increased by two.

Similarly, there are three ways to get permutations in Spy12i+2 by inserting the entry n + 1:

(cq) if m € Sp2it1, then we can insert n + 1 into 7 as a new cycle. This gives the term Sn 0

(cp) if m € Sy aiy2, then 2cpk () 4 cyc () = 2i + 2. We can insert n + 1 just before or right after
each cycle peak of . Moreover, we can insert n + 1 at the end of a cycle of 7. This gives the
term (2i + 2)€,

(c3) if m € Sy, then 2cpk () + cyc () = 2i. We can insert n+ 1 into any of the remaining n — 2i

positions, and the number of cycle runs is increased by two. This gives the term 4(n—2i)§,;_;.

In conclusion, we have
wrri = 20+ D&+ 4 =204+ Vg, + 6,5
$n+11_(21+2)$n1+4( 2)5n11+€:

Comparing this with (28) leads to &, = A7, and &, and this completes the proof. O

n12'

5. Excedance-type polynomials of signed permutations
5.1. Basic definitions

Let 0 = o(1)0(2)---o(n) € SE. It should be noted that the n letters appearing in the cycle
notation of o € Sr‘f are the letters o(1), 0(2),...,0(n). We say that i is an excedance (resp. anti-
excedance, fixed point, singleton) of o if o(|o(i)]) > o(i) (resp. o(lo(i)]) < o(i), o(i) = i,
o(i) = i). Let exc(o) (resp. aexc(o), fix(o), single(o), neg(o)) be the number of excedances
(resp. anti-excedances, fixed points, singletons, negative entries) of o.

Example 5.1. The signed permutation = = 351724689 can be written as (9)(3, 1)(2, 5)(4, 7, 6)(8).
Thus, = with only one singleton 9 and one fixed point 8, and 7 has 3 excedances, 4 anti-excedances
and 3 negative entries.

We say that i € [n] is a weak excedance of o if (i) =i or o(|o(i)|) > o(i) (see [13, p. 431]). Let
wexc (o) be the number of weak excedances of o. Then wexc (o) = exc(o) + fix (o). The number
of type B descent of o is defined by

desg(o)=#{i € {0,1,...,n—1} | o(i) > o(i + 1)},
18
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where ¢(0) := 0. Following [13, Theorem 3.15], the statistics desy and wexc have the same
distribution over B, and their common enumerative polynomial is the type B Eulerian polynomial
(see [52, A060187]):

X) — Z XdesB(a) — Z Xwexc(a). (35)
aeS,’f aesﬁ

Let Q(n, i) be the number of permutations in S, with i left peaks (see [52, AO08971]). Using the
theory of enriched P-partitions, Petersen [46, Proposition 4.15] obtained that

[n/2]
24' n, X1+ x)"2 (36)

which has been extensively studied, see [21,37,51,55] and the references therein.

5.2. A unified generalization of the expansion (36) and Propositions 3.1 and 3.2

Consider the following polynomials
Bn(X, v, s, t,p, q) — Z xexc(a)yaexc(a)ssingle(c)tﬁx(a)pneg(rr)qcyc(n)'
(re.s‘ff

Theorem 5.2. We have

X t+s
Bu(x,y,8,t,p.q) = (1+P)“y“An< P ) (37)
vy y+py

In the sequel, we shall prove Theorem 5.2.

Lemma 5.3. Let p and q be two given parameters. If
Gs={ > q(t+sp),s—> (1+pky,t > (1+pky,x > (1+pky,y > (1+pky},  (38)
then we have DZ3U) =JBu(x,¥,5s,t,D, Q).

Proof. We first introduce a grammatical labeling of o € S? as follows:

(L) if i is an excedance, then put a superscript label x right after o (i);

(L) if i is an anti-excedance, then put a superscript label y right after o (i);
(L3) if i is a fixed point, then put a superscript label t right after i;

(Ly) if i is a singleton, then put a superscript label s right after i;

(Ls) put a superscript label J at the end of o;

(Lg) put a subscript label g at the end of each cycle of ¢;

(L7) put a subscript label p right after each negative entry of o.

For example, for o = (1 3,2, 6)(4)(5), the grammatical labeling of & is given below:
(1°3Y2,6)q(4, )q(5")).-

Note that the welght of o is given by

w(o,) :]xexc(o)yaexc(a)ssingle(n)tfix(rr)pneg(a)qcyc(rr).

For n = 1, we have 8% = {(1° ){, 75){7 Note that Dg,(J) = gJ(t + sp). Hence the result holds for
= 1. We proceed by induction. Suppose we get all labeled permutations in o € S _1» where
> 2. Let & be obtained from ¢ € Sn_ by inserting the entry n or n. There are five ways to label

the inserted element and relabel some elements of o:
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(cq) if n or n appended as a new cycle, then the changes of labeling are illustrated as follows:

(cp) if we insert n or n right after a fixed point, then the changes of labeling are illustrated as
follows:

(c3) if we insert n or n right after a singleton, then the changes of labeling are illustrated as follows:
@)yl ) > "'(?;;”y)q("')"" ...(fp)q(...)..._> ...({iﬁ;)q(...)...;

(cq) if we insert n or n right after an excedance, then the changes of labeling are illustrated as
follows:

v a(Jo@]) - gl ) e = e (o (Y (Jo ()] - gl ) -

(oo (Jo(D) Yl ) (P (Jo (D) gl )

(cs) if we insert n or n right after an anti-excedance, then the changes of labeling are illustrated
as follows:

v (o (@ (|o@)) - gl )= e (o (o)) - Ng( )

(o @Yoo D) Yol ) e = (e (P (o)) - g )

In each case, the insertion of n or n corresponds to one substitution rule in G. Therefore, the
action of D¢, on the set of weighted signed permutations in 8571 gives the set of weighted signed
permutations in S. This yields the desired result. O

A proof of Theorem 5.2. Let G3 be the grammar given in Lemma 5.3. Consider a change of the
grammar Gs. Setting A =t + sp,B=(1+p)x and C = (1 + p)y, we get

DG}(]) = QIA, DG3(A) = BCv DG3(B) = BC, DG3(C) = BC.
Let G4 = {] — qJA,A — BC,B — BC, C — BC}. It follows from Lemma 3.12 that

DE4U) =J Z AfiX(ﬂ)BE‘XC(ﬂ)Cdl‘Op(ﬂ)quC(ﬂ).

TESH
Upon substituting A=t + sp, B=(1+ p)x and C = (1 + p)y in the above expansion, we get
DLU) =] Y (t +sp)™ M x + px)™ )y 4 py) P gvel, (39)
TESH

It follows from (39) and Proposition 3.11 that

X t+sp

Dn = ] + " nA Ty T T .
() =J(1+p)y n(y T+ oy )
Combining this with Lemma 5.3, we obtain (37). This completes the proof. O

Combining (11) and (37), we get the following result.

Corollary 54. Let Sp;j = {m € Sy:cda(w) =0, fix(;w) =1, exc(mw)=j}, and set
yif@= Y q¥™.

TESn,ij
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Then we have
n L(n—i)/2]

Bu(x,y,5,t,p,q) =Y (t+pY(1+p)I"" Y yif@xyYx+y)y .
i=0 j=0

In particular, settingy =s = 1and t = 0 in By(x, y, s, t, p, q), we have

Ln=i)/2]
3 aexclopres(o)gavcin) —Zp(lﬂv Z Vuif(@¥ (x + 1) (40)

GEDB

When p = 0, then (40) reduces to (7). From (37), we get

. ) t+s
Bn(X, 1,s,t,1, q) — Z Xexc(r[)ssmgle(rr)tflx(r[)qcyc(n) — znAn <X, ?’ q> . (41)

aeS,’f

Note that B,(x, 1,1, —1, 1, 1) = 2"d,(x), Bs(x,1,1,0,1,1) = dﬁ(x), Bny(x,1,2,0,1,1) = 2"Ay(x).
Combining Theorem 3.6 and (41), we get the following result.

Corollary 5.5. Let t,s and q be three given real numbers satisfying 0 < t+s < 2and 0 <
q < 1. Then By(x, 1,s,t, 1, q) are alternatingly increasing for n > 1. In particular, the polynomials
Bn(x, 1,s,2 — s, 1, q) are bi-y-positive.

5.3. Several convolution formulas

Consider the following multivariate polynomials

Bn(X, v, s, t,p, -1) — Z xexc(o)yaexc(rr)ssingle(n)tfix(rr)pneg(a)'

(reS,‘,;

Set Bo(x, y, s, t,p, 1) = 1. Using (37), we obtain
o0 Z"
B(x.y.s.t.p. 1:2) = D Ba(x.y.5. 6.0, 1)
oo
X t+s z"
=Y (1+4p)y"A, <a P 1) =
"—o Yy y+py n
- (x t+sp ) (1+pyz)
= A=, 1 .
y y+py n!
Combining this with (10), we get
(y _ X)e(f+5p)z

B(X’ y.s.t.p. 1 Z) = ye(1+P)XZ — xe(1+pyz* (42)
Define
n—l yn 1
Dn(x,y) = xyiy =xy(X"2 + X" By 4+ xy" 3 4+y"2) forn > 2.
In particular, @,(x, y) = xy and @3(x, y) = xy(x +y). Set Py(x,y) = P1(x,y) = 0.
Theorem 5.6. For n > 2, we have
n—2
n n n—k
Ba(x,y,5,t,p, 1) = (t+p)' + ) | (k>3k(x, ¥ss, 6P, @i, y)(1 +p)' - (43)
k=0
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Proof. Note that

P(x,y.p:2): =) Plx,yN1+p)'

n=0
_ i((ler)XZ) i 1+pyz
X—y ‘= n! —Yy =
= xiiy (e"PM 1 — (1 + p)xz) — ( (P2 _ 1 — (1+p)yz)
y (14p)xz X (1+p)yz
= e 1) — 1
2 ) - )
-1— y ell+plxz 4 el1+p)y
y—x —x
So we have
i Zn (1+p)x (1+p)
ye xe
B(x,y,p;z) =Y _ Pn(x,y)(1+p)’ —, =1-
y—x
n=0
For n > 2, we define
n—2
fux.y.s.t.p)=(t+sp)"+ ) ( )Bk X,y 6,9, 1)®n_i(x, y)(1+p)" . (44)
k=0

Set fo(x,y,s,t,p) = 1and fi(x,y,s, t,p) =t + sp. It follows from (44) that

[e]
Zn
fy.s.6.p:2)= ) filxy5.t.p)—

=el™PZ 4 B(x,y,s,t,p, 1;2)P(x, Y, p; 2)
_ (t+sp): (1+pz _ ya(14p)
_ e+ ( (y — x)elt+sp* ) <l _ye PRZ _ yel Pyz>

yell+pxz _ ye(l+plyz y—x
=B(x,y,s,t,p, 1; 2).
Thus we obtain
B(x,y,s,t,p, 1;z) = e™P% L B(x, y,s,t,p, 1;2)®(x, y, p; 2).
Equating the coefficients of %’,‘ in both sides of the above expression, we get the desired result. O
Note that
An(x) = By(x,1,0,1,0, 1), du(x) = Bn(x,1,0,0,0, 1),

Bu(x) = Ba(x, 1, 1,x, 1, 1), d8(x) = Ba(x, 1, 1,0, 1, 1).

The following corollary is immediate from Theorem 5.6 by special parametrizations.

Corollary 5.7. For n > 2, we have

= (n 2 n—1—k
A(x) =1+ B AX)x+x"+---+x ),
o \%
n—2 n
- (k)d" X+ X2+ xR,
k=0
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Bu(x) = (1+x)" +Z( >ka)x+x 4o xRk

_1+Z(> X)X + X%+ - 4 xRk

Using the theory of geometric combinatorics, Juhnke-Kubitzke etal. [35, Corollary 4.2] obtained
the convolution formula of d,(x) that is given in Corollary 5.7. It would be interesting to derive the
other convolution formulas by using the theory of geometric combinatorics.

5.4. A relationship between derangement polynomials of types A and B

Consider the following polynomials

di(x. p) = By(x.1,1,0,p, 1) = Y x*(7)pne&(®)

neDE
By Theorem 5.2, we get
(o] (o]
z" p (1+p)z"
B _
Do p) =Y Ay (x, T 1) - (45)
n=0 n=0
From (10), we see that
Zn 1— Dz
ZA xp i =0 (46)

— xe?

Combmmg (45) and (46), we get

B (1 —x)eP*
Zd X p n el+p Xz _ xe(14+p)z * (47)

Note that d5(x, 0) = dy(x) and dB(x, 1) = dB(x). Below are d&(x, p) for 0 < n < 4:

dg(x, p) =1, di(x,p) = p, d5(x,p)=x+2px+p*(1+x),

dB(x, p) = x(1 +x) + 3px(2 + %) + 3p>X(3 + %) + p>(1 + 4x + ¥?),

dB(x, p) = X(1 + 7x + x*) + 4px(2 + 8x + x*) + 6p°x(4 + 9x + x*)+
4p3x(7 + 10x + x2) + p*(1 + 11x + 11x% + x°).

Lemma 5.8. For 1 <i<n,let 55.:‘ be the set of type B derangements of order n with the restriction

that the set of negative entries of each derangement is {n,n—1,...,n—i+ 1}. Let dﬁ_i(x) be the
derangement polynomials over ’5&. In other words,

— Z Xexc(u).

B
GEDH i

Then dj} (x) = d}

n,i—1

(x)+d)_,;_y(x) for any 1 < i < n, where d} ;(x) = dy().

Proof. For any 1 <i < n, we partition the set 55,1‘ into three subsets:
~B 1 B .
D,; ={o € D,; | nis a singleton of o},
Dy = {0 € D}, | single (o) =0},
Dy} = {0 € D}, | single(o) > 0 and 7 is not a singleton of o'}.
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Claim 1. For o € Dn ;» we define a bijection ¢; : B: — 55 1i_1 by deleting the cycle (1) in o.

Clearly, ¢1(c) € DE _1i_1- On the other hand, for o' € DE_ 1i_1» the permutation ¢y !(0") is obtained
from o’ by appendz (n) to o’ as a new cycle.

Claim 2. There is an order-preserving bijection ¢, : D > Dm ;- Foro e Dn i, we define the map
¢2 by
o()+1, ifo(G)e{1,2,....,n—i};
$2(0)i) =1 1. zfﬂ(])—n—l+1
o(j), ifo(j)e{n—i+2,...,n—1,n}
It is clear that ¢,(0) € D 1 and exc (o) = exc(¢,(o)). For o’ € Dn, 1, the inverse of ¢, is given as
follows:

o(j)—1, ifo(j)e{2,3,...,n—i+1};
¢, ' )=n—i+1, ifc'()=1
a(j), ifo()efn—i+2,...,n—1,n}.

See Example 5.9 for an illustration of ¢5.

Claim 3. There is an order-preserving bijection ¢s : 3 DEI 1 \D ;- Foro € D53 let Single (o)

be the set of singletons of o. Let the set of smgletons of ¢3(0) be deﬁned by
Single (¢3(0)) = {k+ 1: k € Single (¢)}.

Define

nz'

Alc)={n,n—1,...,n—i+ 1} U{1, 2, n—z}\Smglea)
Blo)={n,n—1,...,n—i4+2}U{1, 2, —1i,n—1i4 1} \ Single (¢3(0)) .
)

We write the elements in A(o) and B(c) in increasing order. If o(j) is the kth element of A(c),
then let ¢3(o)(j) be the kth element of B(c). It is clear that ¢3(o) has at least one singleton. See
Example 5.10 for instance. Along the same lines, one can define the inverse of ¢s. It should be noted
that the order-preserving bijection ¢3 does not change the number of excedances.

In conclusion, we have

Z Xexc(o): Z Xexc(a)+ Z Xexc(a)+ Z xexc(o)

065% (reﬁB 1 rreﬁsz 05583
_ § : xexe (o) + § : xexc
oeDB oeDB

n—1,i—1 n,i—1

which leads to the desired result. O
Example 5.9. Let o =(1,4,3,9,8)(2,5)(6,7) € Dyj. Then ¢5(0) = (2,5, 4,9, 8)(3,6)(1,7).

Example 5.10. Let o =(1,4,3,9,8)(2,5)(6)7) € Dy,. Then
Single (o) = {6, 7}, Single (¢3(c)) = {7, 8}.

Moreover, A(oc) = {9,8,1,2,3,4,5}, Blo) = {9,1,2,3,4,5,6}. Then the order-preserving
bijection between A(co') and B(o') can be illustrated by the following array:

9 81 2 3 45
9 1 2 3 4 5 6)°
Therefore, ¢3(c) = (2,5, 4, 9, 1)(3, 6)(7)(8).

We can now conclude the following result.
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Theorem 5.11. We have

n i .
dB X P) Z xEX¢ (o) neg(fr — (i>pi (:.)dn—j(x)-
0 0

UEDB i=
In particular,

d(x) = (':) C)dn_j(x).
i=0 =0

Jj=

Proof. Iterating the formula df (x) = d}

n,i—1

i
= Z C)dn,j(x) forany 0 <i<n
j=0

In particular d 4(x) = dB ox) + dn 1.0(¥) = dn(x) + dp—1(x).

For 1 <i<n,let D be the set of type B derangements in DE with the restriction that the set of
negative entries of each derangement is {ji, jo, ..., ji}, where {j1,ja, ...,j;} is a subset of [n] with
i elements and j, = —j, for £ € [i]. Let ai’i(x) be the derangement polynomials over 55,,.. In other

words,
Z xexc(a)

rre‘Dn,

(x)+dB_ 1.i-1(X) leads to

There is an order-preserving bijection ¢, : D i DB Define

C(G):{E?E’""E}U([n]\{jl’j25"'7ji})5
Do)={n,n—1,...,.n—i+1}U{1,2,...,n—1i}.

We write the elements in C(o) and D(o') in increasing order. If o (j) is the kth element of C(o'), then
let ¢4(o)(j) be the kth element of D(c ). See Example 5.12 for an illustration. Along the same lines,
one can define the inverse of ¢4. Clearly, the order-preserving bijection ¢4, does not change the

number of excedances. Thus aﬁ,,.(x) = dﬁj(x), which yields that

n " n ii i
d¥(x, p) = ;(l)dl* (x)p' = 3 <i>p on(j)dnj(x)

where the first equality follows by choosing i negative entries. O

Example 5.12. Let o = (1,4,3,9,8)(2,5)(6)(7) € Dy ,. We have
C(0)=17.6,5,3,1,2,4,8,9},

D(0)=1{9,8,7,6,1,2,3,4,5}.
The order-preserving bijection between A(o) and B(o) can be illustrated by the following array:
(j 6 53 12 438 9)
9 8 7 6 1 2 3 4 5)°
Thus ¢4(c) = (1, 3, 6, 5, 4)(2, 7)(8)(9).

The type D Coxeter group SP is the subgroup of S consisting of signed permutations with an
even number of negative entries. Let DD {o € SD ﬁx( ) = 0} be the set of all derangements in
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SP. The derangement polynomials of type D are defined by
dox) = Y X,
GEDE
Using Theorem 5.11, we get
ln/2] 2i . L(n—1)/2] 21 ..
n : 2i n . 2i+1
SR O 04120 9 () EE R SN (WA e 3] (el TS
i=0 j=0 i=0 j=0

Since the parameter p marks negative entries, we get the following result.

Theorem 5.13. For any n > 1, one has
[n/2] 2i .
Dpoy n 2i '
w= 2 ()2 (5o
i=0 j=0
6. The flag excedance statistic of signed permutations

We say that i € [n] is an index of type A excedance if o (i) > i. For o € Sf, we let
excyp(o) =#{i € [n] : o(i) > i}, neg(o) = #{|o(i)| € [n] : o(i) < 0},
fix (o) = #{i € [n] : o(i) = i}, single(o)=#{i e [n]:o(i) =1},
fexc (o) = 2exc (o) + neg(o), aexcy(o)=n — excy(o) — fix (o) — single (o).

Example 6.1. The cycle decompositionofc = 25134687 9is(1, 2,5, 4, 3)(6)(7, 8)(9). Moreover,
exca(o) =#{1,7} =2, neg(o) = #{5,6} =2, fexc(o) =6, single(o) = fix(c) = 1.

The flag excedance statistic fexc has been extensively studied by Bagno-Garber [5], Foata-
Han [25], Mongelli [45], Shin-Zeng [51] and Zhuang [55]. In particular, Mongelli [45, Section 3]
found the following two formulas:

2
Z XZech(a)pneg(o) — (.1 +p)"A,, (X +p> , (48)
B 1+p

oES,

n n X2 +p
Z XZeXCA(o)pneg(a) — Z (1 +p)kpn—kdk A I (49)

k 1+p

oeDB k=0

Setting p = x in (48) leads to a classical formula (see [1,25] for instance):
D7) = (14X A,
UES#
The flag derangement polynomials are defined by
Dﬁ(X) — Z xfexc(rr).
UEDE

It follows from (49) that

n
D= 3 olelyesto) (Z)u 0y ),

o EDE k=0

Using the above expansion, Mongelli [45, Proposition 3.5] proved the symmetry of Dﬁ(x), Subse-
quently, Shin-Zeng [51, Corollary 5] proved that the polynomials Dﬁ(x) are y-positive.
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Let

Bﬁ,A)(x,y, s, t,p, (I) — Z Xech(o)yaech(a)ssingle((r)tfix(a)pneg((r)qcyc(o)
D'ESE

Now we give the main result of this section.

Theorem 6.2. One has

BAX.y.5.6.p.q) = Y (x+ py)™ Ay + py) Pt + sp) Mgy, (50)

TeSh

Proof. We claim that if

Ge = {I — Iq(t +sp), t = y(x+py), s = y(x+py), x = y(x+py), y = y(x+py)},
then

Dge(l) -1 Z xech(a)yaech(a)Ssingle(a)tﬁx(a)pneg(a)qcyc(a). (51)

O'ESE
Leto € Sr‘f. We introduce a grammatical labeling of o as follows:

(Ly) put a subscript label p right after every negative element of ¢;

(Lp) if i is a fixed point, then put a superscript label t right after i, i.e., (i*);
(L3) if i is a singleton, then put a superscript label s right after i, i.e., (fs);
(Ly) if o(i) > i, then put a superscript label x just before o (i);

(Ls) if o(i) < i, then put a superscript label y right after i or i;

(Lg) put a subscript label g right after each cycle;

(L7) put a superscript label I right after o.

For example, if 0 = (1, 2,5, 4, 3)(6)(7, 8)(9, 10)(11, 12)(13), then the grammatical labeling of ¢ is
given as follows:

(1°275, 43 )y(6, )q(7*8" )g(9" 10, )g(11,12¥),(13")}.

7

The weight of o is given by Ix*(@)yaexcal@)gsingle(@)¢fix(e)pneg (o) geve(@) Every permutation in SP can
be obtained from a permutation in S5, by inserting n or 7. For n = 1, we have S§ = {(l‘)g, (T; ){1}.
Note that Dg,(I) = Iq(t + sp). Then the sum of weights of the elements in Sf is given by Dg,(I).
Hence the claim holds for n = 1.

We proceed by induction on n. Suppose that we get all labeled permutations in Sﬁ_l, where
n > 2. Llet & be obtained from o € SP_, by inserting n or n. When the inserted n or n forms a
new cycle, the insertion corresponds to the substitution rule I — Ig(t + sp). Now we insert n or n
right after o (i). If i is a fixed point or a singleton of o, then the changes of labeling are respectively
illustrated as follows:

--(if)q-~-—>--~(i"ny)q~--,---(i‘)q---—>--~(iyﬁlyj)q---,
~-(i':,)q~--—>‘--(i;ny)q--n'--(f:,)q--~—>-~-(fi’,ﬁyp)q-~-.

If i is an excedance of type A, then the changes of labeling are respectively illustrated as follows:

(o (i o (o) Yge = e (o (e (lo @) g

(o o(lo@) g (o (PR (o) g

The same argument applies to the case when the new element is inserted right after an element
labeled by y. In each case, the insertion of n or n corresponds to one substitution rule in Gg.
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Therefore, the action of D¢, on the set of weighted signed permutations in 8571 gives the set of

weighted signed permutations in S5, and so (51) holds.
For the grammar Gg, setting A=t +sp, B=x+ py and C = (1 + p)y, we get

D¢ (1) = IgA, Dgg(A) = BC, D¢(B) = BC, D¢,(C) = BC.
Let G; = {I — IqA,A — BC, B — BC, C — BC}. It follows from Lemma 3.12 that
Dg7(1) -1 Z Aﬁx(n)Bexc(n)Cdrop(rr)qcyc(n).

neSn

Then upon substituting A =t + sp, B=x+ py and C = (1 4 p)y in (52), we get (50). O
Comparing Proposition 3.11 with Theorem 6.2, we get

X+py t+sp

y+py y+py’q> '

WWJALRQ=U+MWM<

It follows from (10) and (53) that

00 q
Zn (y _ X)e(t+sp)z
Z B%A)(Xa y,s, t,p, Q)*‘ = ( (x+py)z (1+pyz | °
—~ n! (1+plye —(x+pyle
Note that
B;A)(XZ, 1,1,0,px, q) = Z Xfexc(a)pneg(a)qcyc(a).
oe‘Dﬁ
It follows from (54) that

o n 2 IXZ q
Z 1 — x*)eP
E BY(x*, 1,1, 0, px, q); = ( 1 (XZ-(HJX)Z ) 2 (1+p><)2> '
part L \(1 + px)e — (2 +pxje

In the sequel, we consider the y-positivity of the following polynomials:

F]gfexc.cyc)(x’ CI) — Z xfexc(a)qcyc(a)’

GGSE

D%fexc,cyc)(x’ q) — Z Xfexc(o-)qcyc(a)7
aeDﬁ

E(fexc,neg)(x p) — Z Xfexc(rr)pneg(rr)

n ’ .
(reS,lf

From (53), we see that

F'Sfexc,cyc)(x, q) = B%A)(XZ, 1,1,1,xq) = (1 + X)"An(x, q) =1 +x)" Z xexc(n)qcyc(n).

TESH

Using Lemma 2.2 and Theorem 3.6, we get the following corollary.

Corollary 6.3. Let 0 < q < 1 be a given real number. Then F\*"“)(x, q) are bi-y -positive.
Using (53), we get
X
DY) (x, q) = BP(x*, 1,1,0,x, q) = (1 + x)'A, (x, —, q) :
1+x
Combining this with (2), we obtain
D%fexc,cyc)(x’ q) — Z Xexc(n)xfix(rz)(l +X)n—fix(n)qcyc(zr)

TeSy
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n
— ()(qx (1+X Z Xexc(n cyc(m
i=0

i= weDp_i
where the second equality follows by choosing i fixed points. Note that
(@)(14x)" Y XY = (gx)(1+%)""dn-i(x, q).
we€Dy_;

Let g > 0 be a given real number. Then (gx){(1 + x)"~' are y-positive polynomials for all 0 < i < n.
From Proposition 3.2, we see that d,_i(x, q) are also y-positive. By Lemma 2.2, we find that the
polynomials (gx)'(1+x)""id,_i(x, q) are all y-positive with the same center of symmetry. So we get
the following result, which is a generalization of a result of Shin-Zeng [51, Corollary 5].

Corollary 6.4. Let g > O be a given real number. Then DY*Y%)(x, q) are y-positive.

Using (53), we get

X2 4 px
Efexeneg)y p) = BM(x%, 1,1, 1, px, 1) = (1 + px)"A, ( n :;’X ) : (55)

In particular, ES®“™8)(x, —1) = (1 — x)"An(—x). We can now present the following result.

(fexc,neg) (

Theorem 6.5. Let p > 1 be a given real number. Then E, X, p) are bi-y-positive.

Proof. For n > 1, combining (55) and Proposition 3.1, we obtain

E{fe<ne8)(x, p) = (1 4 xp)En(x, p) = (1 + X)En(X, P) + (p — 1XEq(x, D),

where
~ [(n—1)/2] ) ) )
Ea(x.p) =Y vl +px)(1+ px)(1+ 2px + )"~
i=0
Note that (x* + px)(1+px) = x(p(1+x)> +(p — 1)%x), 14 2px+x*> = (1+x)*> +2(p — 1)x. Therefore,
we get
[(n—1)/2]
Ex.p)= Y wXp(1+x)7+(p— 1’111+ %) +2p — 11",
i=0
where y;; > 0 forall 0 < i < [(n— 1)/2] and p > 1. By using Lemma 2.2, we find that for
0 < i< [(n—1)/2], the polynomials y, iX'[p(1+ x)* + (p — 1)°xJ'[(1 4+ x)* + 2(p — 1)x]"~'~% are all
y-positive with the same center of symmetry, and so E,(x, p) is y-positive, which yields the desired
result. O

7. Excedance-type polynomials of colored permutations
7.1. Preliminary

Let r be a fixed positive integer. An r-colored permutation of length n can be written as ¢, where
T =My 7Ty € Spand ¢ = (¢1,¢2,...,Cp) € [0,r — 1], i.e, ¢; is a nonnegative integer in the
interval [0, r — 1] for any i € [n]. As usual, 7€ can be denoted as nfl 71262 ..., where ¢; can be
thought of as the color assigned to ;. Denote by Z, : S, the set of all r-colored permutations of
length n. The wreath product Z, : S, could be considered as the colored permutation group G,
consists of all permutations of the alphabet X' of rn letters:

>={1,2,....,n,1,...,0,..., 101 p=1
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satisfying 7 (i) = 7 (i). In particular, Z;: S, = S, and Z,: S, = SB. Following Steingrimsson [54], for
1<i<n,anindexiis an excedance of w° if i <y m;, where we use the order <y of X:

[r—1] [r—1]

1<fT<f---<f‘l <f2<fj<f--~<f2 <f~--<fn<fﬁ<f---<fn[””. (56)

Let exc (r¢) be the number of excedances of 7¢. A fixed point of 7€ € Z,: S, is an entry n,f“ such
that r, = k and ¢, = 0. An element 7€ € Z. S, is called a derangement if it has no fixed points. Let
Dy, be the set of derangements in Z, : S,. The g-colored derangement polynomials are defined by

nr X q Z xexc () cyc(n )

7¢eDn r

Let dn r(x) := dy(x, 1) be the colored derangement polynomials. According to [23, Theorem 5],

Zn 1 _ (r—1)x
Zdnr(x L

— xe'#

There has been much work on the polynomials d, ((x), see [23,29,51] for instance. By using the
theory of Rees products of posets, Athanasiadis [2, Theorem 1.3] obtained the following result.

Theorem 7.1 ([2, Theorem 1.3]). We have d, ,(x) = dnfr(x) +d, ,(x), where
[n/2] [(n+1)/2]

Z Bur X072 d )= 3 By X140
i=0

The reader is referred to [2, Theorem 1.3], [29, Theorem 4.6] and [32, Proposition 1.5] for various
combinatorial interpretations of dnf (x) and d, .(x). Recently, by defining the modified Foata-Strehl
action on colored permutations, Han [32] gave a combinatorial proof of [2, Theorem 1.3]. Moreover,
Brandén-Solus [10, Corollary 3.9] and Gustafsson-Solus [29, Theorem 5.1] showed that both dnf,(x)
and d,(x) have only real zeros.

Following Steingrimsson [54], the r-colored Eulerian polynomials are defined by

c
An,r(x)= Z Xexc(ﬂ )1
¢ e€ZriSp

which satisfy the recurrence relation

d
Anr(x) = (14 (m — 1)x)An—1,r(x) + rx(1 — X)CTAn,r(x)s Aor(x)=1. (57)
Let Ap r( Zk o Ar(n, k )x¥. Equating the coefficient of x* in both sides of (57), one can derive that
A(n,k)=(k+DAn—1,k+n—k)+r—1An-1,k—1), (58)
with A;(0, k) = 8o« (see [54, Lemma 16]). According to [54, Theorem 20], we have
Zn -l _ X) z(1—x)
ZAn r ' _— m. (59)

When r = 1 and r = 2, the polynomial A, ,(x) reduces to the types A and B Eulerian polynomials
An(x) and Bp(x), respectively. Comparing (10) with (59), one can see that

1 —1
An,r(x) = rnAn (xv Ma 1) ,
r

since it follows from (10) that

ZTHA ( 14+ —1)x 1) 2N _ (1 _X)eZ(l—x)erxz _ (1 —x)ez(l_")
r

n! ez — xe'” 1 — xez(1—0)
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Following [29, Corollary 4.4], we have

dn,r(x) = Z( -1 )n—i <?>Ai,r(X)’

i=0
Recently, Athanasiadis [4, Eq. (21)] considered the following expansion:

An () = AL, (X) + Ay (x), (60)
where
A=) (Z)d;,,(x), OE (Z)df?r(")'
k=0 k=0

7.2. An equivalent result to Theorem 3.6

In [23, Proposition 4], Chow and Mansour found that
dn.r(X) — Z xwexc(n)(r _ -l)fix(ﬂ)rn—ﬁx(n)’
TESH

where wexc(wr) = #{i € [n] : m(i) > i} is the number of weak excedances of m. Note that
wexc () = exc () 4+ fix (7). Along the same lines of its proof of [23, Proposition 4], one can derive
that

dn,r(x; q) — Z xwexc(n)(r _ -l)fix(n)rn—ﬁx(n)qcyc(n). (61)
TESH
Define
(X, P, q) = An(X, Xp, q) = X" (IpMmgavetn),
TESH

In particular,

an(x, 1, Q) — Z Xwexc(rz)qcyc(ﬂ).

TESH
Let 7! be the inverse of . The bijection 7 — 7! on S, shows that (exc, fix, cyc) is equidis-
tributed with (drop, fix, cyc). Thus (wexc, fix, cyc) is equidistributed with (n — exc, fix, cyc).
Therefore, we get

1
aq(x, p, q) = X"Ay (;, P, q) .

It should be noted that if p > 0 and q > 0, then dega,(x, p, q) = n. Moreover, a,(0, p, q) = 0 and
the coefficient of the highest degree term of a,(x, p, q) is p"q", which corresponds to the identity
permutation 12 - - - n. So we have a,(0, p, q) < p"q" when p > 0 and q > 0. Therefore, an equivalent
result to Theorem 3.6 is given as follows.

Theorem 7.2. Letp € [0, 1] and q € [0, 1] be two given real numbers. The polynomials a,(x, 1, q) are
bi-y-positive and the polynomials a,(x, p, q) are alternatingly increasing for n > 1.

By (61), we see that
n r—1
dnr(x,q) =1"ay | x, iv qj)-.
So a special case of Theorem 7.2 is given as follows.

Corollary 7.3. Let q € [0, 1] be a given real number and let r be a fixed positive integer. Then the
polynomials d, ,(x, q) are alternatingly increasing for n > 1.
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7.3. The bi-y -positivity of colored Eulerian polynomials

In order to deduce the recurrence system of the bi-y-coefficients of A, (x), we now give a
grammatical description of A;(n, k), which gives an extension of Proposition 3.10.

Lemma 7.4. If Gy = {u — wv', v — u"v}, then we have

n
DL () = """ Y Adn, ku" (62)
k=0

Proof. Note that D (u"'v) = u"~'v and Dg,(u"™'v) = u"v(u" +(r —1)v"). Assume that the result
holds for n = m, where m > 1. Then
Dgls+l(ur71v)

= D¢, (DE,(u"'v))
m
= Dg, (urlu ZAr(m, k)u“""”u"r)
k=0

m
=u " ZAr(m, k) ((mr — kr + 1 — DuMRryr (e 4 1)uim=ktDrykry,
k=0

r—1

Extracting the coefficient u™Tou(™—*+1rykr in the last expression, we get

(rk + DA,(m, k) + (r(m+ 1 —=k)+1r — 1)A.(m, k — 1).

Comparing the above expression of coefficients with (58), we see that Dgs“(ur‘]v) can be written
as follows:
m+1
Dg8+1(ur—lv) — ur—lv ZAr(m 4 1, k)u(m—k+1)rvkr.
k=0

Hence the result holds for n = m + 1. This completes the proof. O

Recall that Ay 1(x) = An(x) and Ap 2(x) = Bn(x), which are both y-positive polynomials. We can
now present the following result.

Theorem 7.5. Let r > 2 be a given real number. For n > 1, we have

n/2] [(n—1)/2]
Anr(x) = Z o X1+ X" 4 x Z oy o X1+ X1 (63)
where the coefficients an Kr and o . satisfy the recurrence system

a1:r+1,k;r =(1+Tk) nkr+2r(n_2k+2) n,k— 1r+2ank 1r

an_JrLk;r =(r— 2) O ker + (T -1+ T'k) 0 ker +2r(n — 2k + ]) nk—1;r>
with the initial conditions oy =1, @i, =T —2,af ., =i, = 0 for k # 0. So the polynomials
An (x) are bi-y-positive.
Proof. Consider a change of the grammar given in Lemma 7.4. Note that

Dg(u™v") = ru"v"(u" +v"), Deg(u" 4+ v") = 2ruv’,
Dcs(ur—lv) — (r _ l)ur—lvl‘+1 + u2r—1v — (r _ z)ur—lvr+l + ur—lv(ul‘ + vr)’
Dcs(ur—lvr+l) — (r _ 1)ur—1vr+1(ur + UT) + 2ur_]U(urUr).
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Settinga=u"v", b=u"+v", c =u""""*! and I = u"~'v, we obtain

D¢g(a) = rab, Dgg(b) = 2ra,

D¢g(c) = (r — 1)bc + 2la, Dgy(I) = (r — 2)c + Ib.
It should be noted that

c=I". (64)
Consider the grammar

Go={ > Ib+(r —2), a— rab, b — 2ra, c — (r — 1)bc + 2Ia}.

By induction, it is routine to check that there exist nonnegative integers such that

[n/2] (n—1)/2]
Dgg Zankr ap 2k1+ Z Ol kbn 1-2k. (65)

In particular, Dg,(I) = Ib + (r — 2)c, Dég(l) = (4(r — 1a + b*)I + r(r — 2)bc. We proceed to the
inductive step. Note that
D) Za+ b 172K((1 4 rk)a* B3I + 2r(n — 2k)a* T + (r — 2)d*be)+

n,k;r

> anjk;rb"—z—%((r — 1+ rk)a*b?c + 2r(n — 1 — 2k)a**"c + 2a**"b).

Extracting coefficients of a*b™"1=¥[ and a*b" !¢ on both sides and simplifying yields the desired
recurrence system. Setting u” = 1 and v" = x, we have a = x, b = 1 + x. Moreover, it follows
from (64) that ¢ = Ix. Comparing (62) with (65), we get (63). O

It should be noted that the bi-y-positivity of A, ,(x) follows already from the result of Branden-
Solus [10, Theorem 3.1] that these polynomials have real-rooted symmetric decompositions. The
recurrence system of the bi-y-coefficients of A, ,(x) is deduced by the change of grammar method.
It would be interesting to further study this recurrence system.

In the sequel, we give an application of Theorem 7.5. Following Brenti [13, Eq. (10)], the
g-Eulerian polynomials type B are defined by

X q) Z xdesB(n neg(a)
nESB
When q = 1, the polynomial B,(x, q) is reduced to B,(x). The polynomials B,(x, q) satisfy the

recurrence relation

9
Bu(x, @) = (1+ (1 + q)nx — x)Bn_1(x, q) + (1 + q)(x — x*)—Bu_1(x, q), Bo(x,q) = 1.

ax
The exponential generating function of B,(x, q) is given as follows (see [13, Theorem 3.4]):
o n _ z(1—x)
z (1—x)e
X;Bn("v D = T et (66)

Comparing (59) with (66), we see that A, q+1(x) = Bu(x, q). As a special case of Theorem 7.5, we
have the following result.

Corollary 7.6. Let q > 1 be a given real number. Then B,(x, q) are bi-y -positive.
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7.4. Two multivariate colored Eulerian polynomials

Let 7€ € Z; 1 Sp. Recall that exc (7€) = #{i € [n] : i <; m;}. We define
aexc(n) =#{ien]:m <f i}, fix(z°)=#{i € [n] : 7y =i and ¢; = 0}.
Consider the following multivariate colored Eulerian polynomials:

An r(x v, P, q Z Xexc aexc(n )pfix(rr )qcyc(n ).

7€ €ZrSn

Clearly, Ana1(x, 1,p, q) = An(x, p, q), An,r(xy 1,1,1)= An,r(X) and A, (x,1,0,q) = dn,r(xv q).

Lemma 7.7. IfGo={— ql(r—1)x+p),x — rxy,y — 1xy,p — rxy}, then
ng( ):1 Z Xexc(nf)yaexc(nc)pfix(nf)qcyc(;ﬂ). (67)

7€ €ZriSn

Proof. We now introduce a grammatical labeling of 7€ € Z, : S, as follows:

(L1) if i <5 m;, then we label nf’ by a subscript label x;

(Lp) if m; <; i, then we label nff by a subscript label y;

(L3) if m; =i and ¢; = 0, then we label i by a subscript label p;

(L4) put a subscript label I right after 7€, and put a superscript label g right after each cycle.

Note that the weight of 7€ is given by
w(n.C) — Ixexc(ﬂc)yaexc(rr‘)pfix(n”)qcyc(ﬂ‘).

For n = 1, we have
Zy 281 = {(1p);1» (Tx);]» (1;[<2]);]7 cees (1[r71]x)?}-

Note that Dg,,(I) = gI((r — 1)x + p). Then the sum of weights of the elements in Z, : 8; is given by
D, (I). Hence the result holds for n = 1. We proceed by induction on n. Suppose we get all labeled
permutations in 7€ € Z, : S;_1, where n > 2. Let 7¢ be obtained from 7€ € 7y Sp_1 by inserting

n%, where 0 < ¢; < r — 1 is a nonnegative integer. When the inserted n% forms a new cycle, the
insertion corresponds to the substitution rule I — qI((r — 1)x 4 p) since we have r choices for ¢;.
For the other cases, the changes of labeling are illustrated as follows:

Ci Cit1 Ci : Cit1 .
...(...ﬂilx liJrl ...)...'_)...(...nilxncjyﬂiiﬁ )7
C Cit1 Ci . Cit1
"'("'”zly”iﬁ ...)...}_)...(...ﬂi’xncjyr[i;j )’

e (ip) - e (i) -

In each case, the insertion of n% corresponds to one substitution rule in Gyq. Therefore, the action
of Dg,, on the set of weighted colored permutations in Z; : S,_; gives the set of weighted colored
permutations in Z; : S,. This completes the proof. O

Now we present the following result.

Theorem 7.8. One has
Ans(%,y. . @) = Y (O™ )P — 1)x + p)™Wge,
TESH
Proof. Let Gy be the grammar given in Lemma 7.7. Settinga = (r — 1)x +p,b =rxand c = ry,
we get Dg,,(I) = gla, Dg,,(a) = bc, Dg,,(b) = bc, Dg,,(c) = bc. Let
Gy ={I — qla,a — bc,b — bc,c — bc}.
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It follows from Lemma 3.12 that
Dgn(l) -1 Z bexc(n)cdrop(n)afix(rr)qcyc(n). (68)
weSy
Then upon substituting a = (r — 1)x + p, b = rx and ¢ = ry in (68), we get the desired result. O
Comparing Proposition 3.11 with Theorem 7.8, we get

x (r—1x+p
Anr(x,y,p,q) = (ry)'An <a —_—, Q> :
y ry

It follows from (69) that
Anr(x,1,%,q) =1"Ay (X, %,q) = 1" Z xwexe(m)geye(n)

TeSy

(69)

From Theorem 7.2, we see that the polynomials
An (X, X, q) = Z xwexc(ﬂ)qcyc(n’)
weSp

are bi-y-positive, where q € [0, 1] is a given real number. So we have the following result.

Corollary 7.9. Let q € [0, 1] be a given real number. Then A, ;(x, 1, x, q) are bi-y-positive.
In the sequel, we give a unified generalization of Theorems 5.2 and 7.8. As usual, set [0], = 0.
For any positive integer n, let
[l =1+p+---+p"".
Let 7€ € Z, 1 Sp. A singleton of 7€ is an index i € [n] such that 7; = i and ¢; > 0. We define
single (7¢) = #{i € [n] : m; = i and ¢; > 0},
excp(n®) = #{i € [n] : i <f m; and 7; # i}.
It is clear that exc (7€) = excp(€) + single (¢). Let csum (7€) = Z?Zl ¢;. Consider the following
multivariate colored Eulerian polynomials:
Ay r(x, V.5, t,p, q) — Z XeXCB(nC)yaexc(n‘)ssingle(nc)tﬁx(nf)pcsum(nf)qcyc(nc).
¢ €ZriSp
As a refinement of the grammatical labeling given in the proof of Lemma 7.7, we give another
grammatical labeling of 7€ € Z, : S, as follows:
Ly) if i < m; and m; # i, then we label nf" by a subscript label x;
L) if m; <y i, then we label nf" by a subscript label y;
L3) if m; = i and ¢; = 0, then we put a subscript label t just before i;
Ly) if 7 =i and ¢; > 0, then we put a subscript label s just before nf";
Ls) put a subscript label p“ right after each element nic" of 7¢;
Lg) put a subscript label I right after 7€, and put a superscript label g right after each cycle.

—~ o~ o~ o~ o~ —~

Then the weight of 7€ is given by
w(nC) — Ixech(nC)yaexc(nc)ssingle(nc)tfix(nf)pcsum(nc)qcyc(nc).

For n = 1, we have Z,; 2 S = {(:1,0){, G 1p){, G15), ..., (171, 1)7). The general case follows by
the same argument as the proof of Lemma 7.7 and we omit its proof for simplicity.

Lemma 7.10. If Gip = {I — gl (t +sp[r — 11,) ,x — [r]pxy,y — [rlpxy, t — [r]pxy,s — [r]xy},
then
DH

612(1) =1 Z Xech(rrC)yaexc(rr‘)Ssingle(zrc)tfix(nc)pcsum(rrc)qcyc(rrf). (70)

€ E€ZrSy
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Theorem 7.11. We have

X t+splr—1]
Anr(x,y,5,t,p,q) = [r]y"An (—, L 2 ) .
y [rlpy

In particular,

Y6 c c c t xp[r — 1
An,r(xa 1,xt,p,q) = Z Xexc(n )tle(JT )pcsum(rr )qcyc(n ) — [T];An <X, %5 q) .
p

7€ €ZrSn
Proof. Let Gy, be the grammar given in Lemma 7.10. Setting ay = t +sp[r — 1]p, a = [r]pX, a3 =
[r]py, we get
Dg,,(a1) = @za3, Dg,,(az) = G2a3, Dg,,(a3) = aas.
Let G135 = {I — qla;, a; — a,as, a; — aas, a3 — axas}. Then by Lemma 3.12 and Proposition 3.11,
Dg —1 Z ale ) exc(n drop(n)qcyc(n) Ia”A (172 ﬂ .q).
N TESH (13 a3

Then upon substituting a; = t + sp[r — 1], a; = [r]px and a3 = [r],y in the above expression, we
get the desired result. O

Note that 14 p[r — 1], = [r]p. From Theorem 7.11, we see that

x+xplr—1

An,r(xa 1» X7 Xv p7 Q) = [r];An (X7 ]p ’ q) = [r];An (X! X, q) .
[rlp

So we have the following result.

Corollary 7.12. Let wexc () = exc () + fix (7 ¢). We have
Z Xwexc(nc)pcsum(nc)qcyc(nf) — [r]n Z Xwexc(n)qcyc(n)
b .

¢ €ZriSn TESy
7.5. Another multivariate colored Eulerian polynomials

Let 7€ = n}'my? -+ 7wa" € Zy 2 Sp. Following [2,4,5,51], we define

exca(m)=#{i e [n]:i <. mand ¢; = 0}, aexca(zw®) = #{i € [n] : wi< i},
fix (7€) = {i €[n]:m =iand ¢ =0}, single(z)=#{i e [n]:m =iandc > 0},

csum ( Z ¢, fexc(m) =r-exca(m®) + csum (7€),

where the comparison is with respect to the order <. of X':

= 2 et el e T <2< <o <1 <02 <cvv- <c M.

Consider the following polynomials
A r) (X y,s,t,D, q Z Xech E)yaech smgle E)tﬁx(n )pcsum(nc)qcyc(nﬁ)
7€ €ZriSn

For 1 < i < n, we introduce a grammatical labeling of ¢ as follows:
(L1) put a subscript label p© right after each element ni‘ of 7¢;
(Ly) if m; =i and ¢; = 0, then put a superscript label t right after i;
(L3) if m; =i and ¢; > 0, then put a superscript label s right after nf";
(L) if i < m; and ¢; = 0, then put a superscript label x just before 7;;

36



S.-M. Ma, J. Ma, J. Yeh et al. European Journal of Combinatorics 118 (2024) 103869

(Ls) if m; <c i, then put a superscript label y just before m;;
(Lg) put a subscript label I right after 7¢ and put a superscript label g right after each cycle.

In particular, the grammatical labeling of elements in Z, : Sy are illustrated as follows:

—s . q —
Ze sy = {15, (1), AP,

We now provide an example to illustrate the above grammatical labeling.

Example 7.13. Let 7€ = (1,4, 5, 2)(3"?)) € Z3 1 Ss5. The grammatical labeling of 7€ is given below
—y s
(1504555,27,)7 (3 )] -
Note that ¢; = 0, 1 or 2. If we insert 6% into 7€ as a new cycle, we get the following permutations:

=y
iy (15047,5,22, )13 (61210

S

(130455, 201322 (6}, ). (1%4%,5,2% (372 )°(6,
If we insert 6% right after the element 1, we get the following permutations:

(1306704755, 25 13, (196,425,220 (3202, (12,61%1)24%5,2 Y1(3121 ).
If we insert 6% right after the element 4, we get the following permutations:

(1304%06755,205 13 ), (1%04056,5,22 (32020, (15,476,528 Y1(31 ).

As illustrated in Example 7.13, the proof of the following result follows by the same argument

as the proof of Lemma 7.7, and we omit its proof for simplicity.
Lemma 7.14. IfGis = {I — gl (t +sp[r — 11,), t — xy+p[r — 11,y%, s > xy+plr —1],%, x —
Xy +plr — 11,y%, y = xy +plr — 11,y*}, then

DEM(I) -1 Z Xech(rrE)yaech(nE)Ssingle(rrt)tﬁx(nc)pcsum(nc)qcyc(nt).

€ €ZrSy

Theorem 7.15. One has
AP, y,5,6,p.9) = Y (x+ pIr — )™ CU[rlpy) ™t + splr — 11,)™* g,

TESH
Proof. Let G4 be the grammar given in Lemma 7.14. Consider a change of the grammar Gy;. Setting
u=t+splr—1lp,,v=x+plr — 1],y and w = [r],y, we get
Dg,,I) = qlu, Dg,,(u) = vw, Dg,,(v) = vw, D¢, ,(w) = vw.
Let G5 = {I — qlu,u - vw, v —> vw, w — vw}. It follows from Lemma 3.12 that
Dgls —1 Z Uexc drop n)uﬁx(n)qcyc( ) (71)
TESH

Upon substituting u = t 4 sp[r — 1],, v = x + p[r — 1],y and w = [r],y in (71), we get the desired
result. O

Comparing Proposition 3.11 with Theorem 7.15, we get

x+plr —1lpy t+splr—1]
AD(x,y.s.t,p, q) = [r])y"Aq ( =, 2.q]). (72)
[rlpy [rlpy
Note that
Ar(X 1,1, 1, x, q Z xfexc(rrf) cyc(zr)

¢ €ZrSy
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A(nr)(xr, 1,5,0,x, q) — Z xfexc(nc)ssingle(nc)qcyc(nc).

nCE€Dn,r

Using (72), we get

AV, 1,1, 1, x, q) = [r]}An(x, 1, @),

sx[r —1
AV, 1,5,0,x,q) = [r]iAn (x, % q) . (73)
X
Note that
An(X, D, Q) — Z Xexc(rr)pﬁx(n)qcyc(rr)
meSh
I n
— Z <>(pq)l Z xexc(n)qcyc(n)
i=0 ! weDy_i
! n
= - )(pq) dn-i(x, q).
1
i=0

Combining this with (73), we generalize a result of Shin-Zeng [51, eq. (2.5)].

Corollary 7.16. For n > 1, one has

n

Y At = 3 <?)<st[r — 1T (%, ),

nCEeDp,r i=0
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